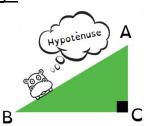
THEOREME: Dans un triangle rectangle

le carré de l'hypoténuse est égal à la somme des carrés des 2 autres côtés.



Exemple: Calcul de AB

D'après le th de Pythagore dans le triangle ABC rectangle en A:

$$BC^2 = AB^2 + AC^2$$

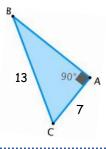
$$13^2 = AB^2 + 7^2$$

 $169 = AB^2 + 49$

$$169 = AB^2 + 49$$

$$AB^2 = 169 - 49$$

 $AB^2 = 120$



RECIPROQUE DE PYTHAGORE: sert à prouver qu'un triangle est rectangle

Exemple: Soit ABC un triangle tel que AB = 12, BC = 9, AC = 15. Prouver qu'il est rectangle.

D'une part
$$AC^2 = 15^2 = 225$$

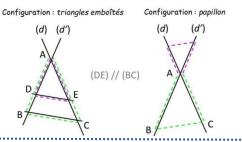
D'autre part
$$AB^2 + BC^2 = 12^2 + 9^2 = 144 + 81 = 225$$

comme $AC^2 = AB^2 + BC^2$ alors d'après la réciproque de Pythagore le triangle ABC est rectangle en B.

Thalès

THEOREME : Si les droites (BD) et (CE) sont sécantes en A Si la droite (DE) est parallèle à la droite (BC) alors :

$$\frac{AD}{AB} = \frac{AE}{AC} = \frac{DE}{BC}$$



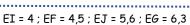
Exemple: Calcul de EA

Comme : (EA)//(CD) ;

(ED) et (AC) sécantes en B Alors d'après le th de Thalès :

$$\frac{2}{5} = \frac{EA}{6}$$

 $EA = 6 \times 2 \div 5$ donc EA = 1.4 cm



RECIPROQUE DE THALES: sert à prouver que 2 droites sont parallèles

Exemple: Prouver que (IJ)//(FG).

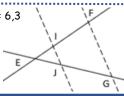
EI/EF = 4/4,5 = 8/9 D'une part

D'autre part EJ/EG = 5,6/6,3 = 8/9

comme EI/EF = EJ/EG et que les points E,I,F et E,J,Gsont alignés dans le même ordre alors d'après la

Pour retenir:

réciproque de Thalès on a : (IJ)//(FG).



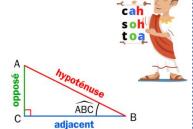
5 cm

(EA) // (CD)

Trigonométrie

FORMULES: ABC un triangle rectangle en C.

$$tan(\widehat{ABC}) = \frac{\widehat{cote} \ Oppose \ \widehat{a} \ \widehat{ABC}}{a \ djacent} = \frac{AC}{BC}$$

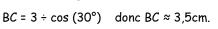


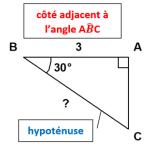
Exemple : Calcul de BC

Dans le triangle rectangle ABC:

$$\cos\left(\widehat{ABC}\right) = \frac{AB}{BC}$$

$$\cos (30^\circ) = \frac{3}{BC}$$





Exemple: Calcul de l'angle \widehat{BAC} :

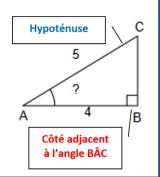
Dans le triangle rectangle ABC :

$$\cos\left(\widehat{BAC}\right) = \frac{AB}{AC}$$

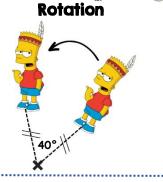
$$\cos\left(\widehat{BAC}\right) = \frac{4}{5}$$

$$\widehat{BAC}$$
 = arccos (4 ÷ 5)

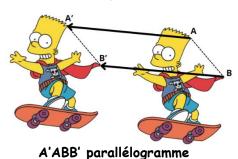
BAC ≈ 37°

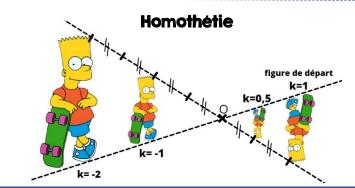


Transformations



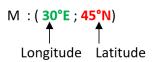
Translation

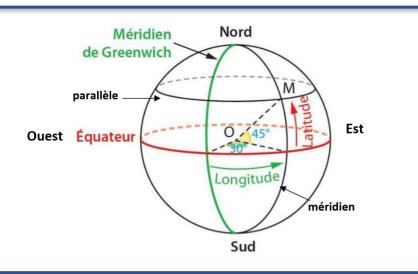




Repérage

Coordonnées géographiques :





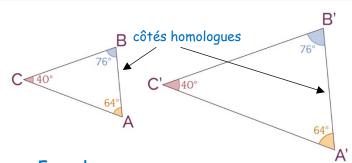
Triangles semblables

<u>Définition</u>: Deux triangles semblables sont deux triangles qui ont leurs angles 2 à 2 égaux.

RAPPEL: La somme des angles d'un triangle est de 180° .

<u>Propriétés</u>: Si deux triangles sont semblables, alors les longueurs de leurs côtés sont deux à deux proportionnelles.

Si les longueurs des côtés de deux triangles sont deux à deux proportionnelles, alors ces triangles sont semblables.



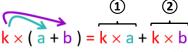
Exemple:

longueurs du triangle ABC	8	AB	AC \v2
longueurs du triangle EFG	16	11	EG \checkmark

$$\frac{16}{8} = \frac{11}{AB} = \frac{EG}{AC} = 2$$

Calcul littéral

DEVELOPPEMENT SIMPLE



développer

Exemple:

factoriser

IDENTITE REMARQUABLE

$$(a - b) (a + b) = a^2 - b^2$$

<u>Exemple</u>: Factoriser: 25y² - 16 = (5y - 4)(5y + 4)

Factoriser:

$$25y^2 - (y + 3)^2 = [5y - (y + 3)][5y + (y + 3)]$$

= $(4y - 3)(6y + 3)$

DEVELOPPEMENT DOUBLE

$$(a + b) \times (c + d) = \overline{a \times c} + \overline{a \times d} + \overline{b \times c} + \overline{b \times d}$$

Exemple:
$$(2a + 5)(a - 7) = 2a^2 - 14a + 5a - 35$$

= $2a^2 - 9a - 35$

EQUATION PRODUIT NUL

Exemple: Résoudre l'équation (2x + 3)(x - 6) = 0

Si un produit est nul alors l'un au moins de ses facteurs est nul.

$$2x + 3 = 0$$
 ou $x - 6 = 0$
 $x = -3/2$ ou $x = 6$

Fonctions

Fonction = Processus qui permet à partir d'un nombre de départ appelé <u>antécédent</u> d'obtenir un nombre d'arrivée (unique) appelé <u>image</u>.

Soit la fonction $f(\infty) = 5\infty + 1$.

1) Calculer <u>l'image</u> de 2 par f :

 $f(2) = 5 \times 2 + 1 = 11$ \leftarrow on remplace ∞ par 2

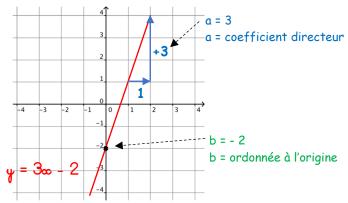
2) Calculer <u>l'antécédent</u> de 31 par f :

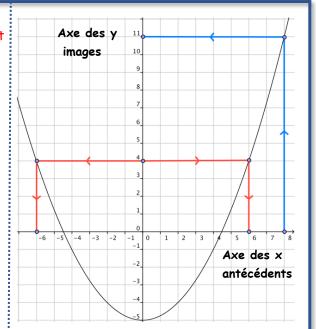
équation
$$\longrightarrow$$
 5∞ + 1 = 31

$$5_{\infty} = 30$$

 $\infty = 6$ donc l'antécédent de 31 est 6

FONCTION AFFINE : $f(\infty) = \infty + b$

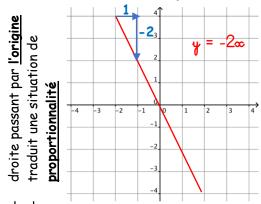




Par lecture graphique l'image de 8 est 11 : f(8) = 11 l'image de 8 par f est 11

Par lecture graphique les antécédents de 4 sont 6 et -6 : f(6) = 4 et f(-6) = 4

FONCTION LINEAIRE : $f(\infty) = \infty$



Addition: $\frac{3}{5} + \frac{2}{15} = \frac{3 \times 3}{5 \times 3} + \frac{2}{15} = \frac{9}{15} + \frac{2}{15} = \frac{11}{15}$ on réduit au <u>même dénominateur</u>

Division : $\frac{3}{5} \div \frac{2}{7} = \frac{3}{5} \times \frac{7}{2} = \frac{3 \times 7}{5 \times 7} = \frac{21}{35}$

← on multiplie par l'inverse

<u>PUISSANCES</u>

•
$$a^n = a \times a \times ... \times a$$

• $10^n = 10 ... 0$

• $10^{n} = 10 ... 0$

• $10^{n} = 10 ... 0$

• $10^{n} = 10 ... 0$

•
$$10^{-n} = 0.0...01$$

• $a^{-n} = \frac{1}{a^n}$ pour $a \neq 0$.

$$n = 0,0...01$$

La notation scientifique de 732 800 :

Nombre compris entre

•
$$7^4 \times 7^5 = 7^{4+5} = 7^9$$
 • $\frac{7^9}{7^3} = 7^{9-3} = 7^6$ • $(7^9)^4 = 7^{9 \times 4} = 7^{36}$

POURCENTAGES • Calculer 40% de 50 c'est : $\frac{40}{100}$ × 50 = 20. • Il y a 13 filles sur 25 élèves.

<u>Augmenter</u> 50 de 40% c'est calculer 1,40 × 50 = 70.

Diminuer 50 de 40% c'est calculer 0,60 x 50 = 30.

6 notes

Calculer le pourcentage de filles : $13 \div 25 = 0.52$ soit 52%

Un nombre premier a exactement 2 diviseurs : 1 et lui-même.

Nombres premiers: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97...

 $30 = 2 \times 3 \times 5$ (décomposition en produit de facteurs premiers)

 $75 = 3 \times 5 \times 5$

Plus Grand Diviseur Commun de 30 et $75 : 3 \times 5 = 15$ (utile pour les problèmes de partage)

Plus Petit Multiple Commun de 30 et $75:2 \times 3 \times 5 \times 5 = 150$ (utile pour les problèmes de rouages)

Statistiques

Liste de 12 notes: 8; 10; 10; 12; 12; 12; 14; 14; 15; 16; 18; 20

FREQUENCE

La fréquence de la note 10 est de $\frac{2}{12} \approx 0,17$ soit 17%.

MOYENNE

La moyenne des notes est de $\frac{8+10 \times 2+12 \times 3+14 \times 2+15+16+18+20}{12} = \frac{161}{12} \approx 13.4$

MEDIANE

Les 12 notes sont dans l'ordre **croissant** : 8 ; 10 ; 10 ; 12 ; 12 ; 12 ; 14 ; 14 ; 15 ; 16 ; 18 ; 20

Médiane = moyenne de 12 et de 14 = 13

Interprétation : au moins 50% des notes sont supérieurs ou égales à 13 et au moins 50% des notes sont inférieurs ou égales à 13.

6 notes

ETENDUE

Etendue = Note max - Note min = 20 - 8 = 12.

Interprétation: il y a 12 points d'écart entre la plus petite et la plus grande note.

FORMULAIRE

Les mesures de longueur

	1	dime	ension	:	lone	ueur
--	---	------	--------	---	------	------

1 case par unité

km	hm	dam	m	dm	cm	mm
1	0	0	0			

1km = 1 000m

Les mesures d'aire

2 dimensions : longueur et largeur

2 cases par unité

kr	n ²	hı	m ²	da	m ²	n	1 ²	dm²		cr	n ²	mm ²		
	1 0 0		0	0	0	0								
1km 2 :	= 1 000 00	00m²					1							

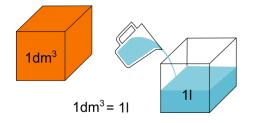
Les mesures de volume

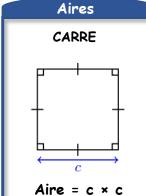
3 dimensions : longueur, largeur et hauteur

3 cases par unité

km ³			hm³			dam³			m ³			dm³			cm ³			mm ³			
			1	0	0	0	0	0	0	0	0	0									

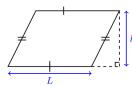
1km³ = 1 000 000 000m³





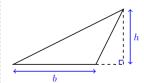
Aire = $L \times I$

PARALLELOGRAMME



Aire =
$$L \times I$$

TRIANGLE



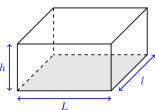
Aire =
$$\frac{b \times h}{2}$$

DISQUE

Périmètre = $2\pi r$ Aire = $\pi \times r^2$

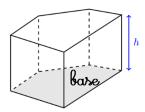
Volumes

PAVE DROIT



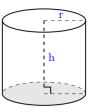
Volume = $L \times I \times h$

PRISME DROIT



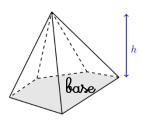
Volume = Aire de la base × h

CYLINDRE



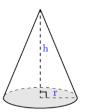
Volume =
$$\pi \times r^2 \times h$$

PYRAMIDE



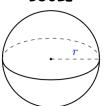
Volume = $\frac{Aire\ de\ la\ base\times h}{3}$

CONE



Volume =
$$\frac{\pi \times r^2 \times h}{3}$$

BOULE



$$Volume = \frac{4 \times \pi \times r^3}{2}$$